
@brodieve

Cryptography
101

Brodie McRae
CISO, Axiom Zen

Who is Brodie McRae?

● Vancouver born+raised
● Hacking software checks to play games for free
● LAMP stack developer before serialization was

cool (“PHP3 is cool, but 4’s gonna be mint!”)
● Basically it was this or jail
● Currently head of security at Dapper Labs

Who is Brodie McRae?

My company built a blockchain called Flow. We
literally rolled our own crypto.

Don’t roll your own crypto.

What is cryptography?

Secret messages using math / algorithms.

Today, cryptography is used to control who can see
certain information, and also guarantee the
authenticity of it.

In 2020, it underpins basically everything.

In 2020, it underpins basically everything.

What is cryptography?

The word cryptography
comes from Greek,

crypto secret
graphy writing

Kryptos, Greek God
of block ciphers

Terms

We need to lay out some terms.

We really do.

Terms

1s and 0s. Even this text you’re reading is
fundamentally just 1s and 0s.

“bits.”

Data

Terms

● Normal, meaningful data that a computer or person
can understand on its own.

● May not be human readable
○ Binary program code
○ ‘Encoded’ (e.g., base64)

Cleartext

Terms

Converting data from one representation into some
other representation using an algorithm (set of rules
and steps).

Easily reversible.

Encoding

Encoding

01100010 01100001 01100011 01101111 01101110

bacon

YmFjb24=

Binary

ASCII

Base64

Why encoding?

● Humans are bad at reading binary.

● Different computers have different
architectures and capabilities, so common
languages help.

Email encoding example

From: Brodie McRae <bronie@mylittlepony.hasbro.com>
To: Alex <alexs@finewineburg.io>
Subject: Super sweet pic of nothing
Content-Type: multipart/mixed; boundary=45eg2c1aa958146c04054e41653a

--45eg2c1aa958146c04054e41653a
Content-Type: text/plain; charset=UTF-8; format=flowed; delsp=yes

Yo here is some pretty sweet nothingness can you dig it.
--
--45eg2c1aa958146c04054e41653a
Content-Type: image/png; name="nada.png"
Content-Disposition: attachment; filename="nada.png"
Content-Transfer-Encoding: base64

iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR42mNkYAAAAAYAAjCB0C8A
AAAASUVORK5CYII=
--45eg2c1aa958146c04054e41653a--

JWT encoding example

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Imt0
bTc5MHIiLCJpYXQiOjE1MTYyMzkwMjJ9.L76O2mf70gDFYZzhF9PhKWQFnjIw8P2K-GFDxJjLeiw

echo
"eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Imt0bTc5MHIiLCJpYXQiOjE1MTYyMzkwMjJ9" |
base64 -D
{"sub":"1234567890","name":"ktm790r","iat":1516239022}

Terms

● Data that cannot be understood by a human or
computer without additional information
(a secret).

● If it’s well done, it appears to be random.

● Usually not text.

Ciphertext

Terms

Using a secret to convert cleartext into ciphertext
data that, without the secret, is meaningless.

Encryption

Encryption

Using a secret to convert cleartext into ciphertext data that,
without the secret, is meaningless.

“bacon”

“bacon” encrypt(“bacon”, secret)

decrypt(“l☃9!^%”, secret)

“l☃9!^%”

Encryption

Using a secret to convert cleartext into ciphertext data that,
without the secret, is meaningless.

Secret: “shift 13 places in the alphabet for each
word character”

= “flat dow truth earth”

“flat dow truth earth”
encrypt(cleartext, secret)

decrypt(ciphertext, secret)

cleartext

“syng qbj gehgu rnegu”

= “syng qbj gehgu rnegu”

ciphertext

Encryption

In practice, encrypted data should appear highly
random.

Encoding vs Encryption

Encoding takes source data and applies
steps (public algorithm) to change its
form.

Encryption requires the source data and
some secret info (e.g., a digital key
and/or algorithm)

“shift 13 places in the
alphabet for each
word character”

Encoding + Encryption

PGP encryption often combines the two,
encoding its encrypted data into base64:

$ head -n 5 test.pgp
-----BEGIN PGP MESSAGE-----

hQIMAwo87e15Vh9UAQ/6Awtm9T2LFyqxtvPJXrzEpM/1J7VLhAG6SvmGMIPuN30b
JlLYnBlvfmMj+olZbmMjiwKDgPvOr4a7QRH8nrnQs2qmIVdUy/UNptuiNtiop8MZ
+3ZPESsZs+CNa7mr4wHuoZtwJ6tk++ObCxW7mqY1s+OaofP4MBgzSYbAPBOJ6VCX

Encryption 101

Caesar’s dead, his knowledge lost, so how does
encryption work today?

“Using a secret to convert cleartext into ciphertext
data that, without the secret, is meaningless.”

..but how?

Terms

A logical operator that takes two inputs (A,B):

A B
0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0 “A or B, but not both.”

XOR - “Exclusive OR”

Bitwise XOR

You can XOR two bytes of data, but it is a
“bitwise” operation”:

 01001011
 10001010

 11000001

⊕

⊕
10001010

01001011

One of the special
properties of XOR is that
it’s reversible:

A ⊕ B ⊕ B = A

(B ⊕ B = 0

 A ⊕ 0 = A)

“Perfect” One Time Pad

A one time pad is considered “perfect” if random
and used only once. |K| > |m| ; Shannon’s theorems

cleartext
01100110011001010111001001101110011000010110111001100100

ciphertext

OTP “key”
01100010011000010110001101101111011011100110000101101001

00000100000001000001000100000001000011110000111100001101

⊕

=

“Less than perfect” Encryption

“How do I encrypt 10GB of data with a 256-bit
key?”

● ECB
● CBC
● CTR

ECB (Electronic Code Book)

⊕ ⊕ ⊕

ECB’s determinism:

Lvh (crypto101)

CBC (Cipher Block Chaining) mode

Decrypt

CTR (e.g., GCM) Counter Mode

(IVish)

Terms

Converting any piece of data, using an algorithm, into
a typically much smaller - but “unique” - identifier.

Hashing

Terms

Think fingerprinting:
● Algorithm: taking someone’s fingerprint
● Input: actual data (real person w/ finger)
● Output: unique identifier called a hash, or a

digest (fingerprint image)

Analogy is somewhat flawed because the output should
never resemble (or give any information about) any
part of the input.

Hashing

Terms

Think fingerprinting:
● Algorithm: taking someone’s fingerprint
● Input: actual data (real person w/ finger)
● Output: unique identifier called a hash, or a

digest (fingerprint image)

Analogy is somewhat flawed because the output should
never resemble (or give any information about) any
part of the input.

Hashing

Hashing - SHA1 example

Converting any piece of data, using an algorithm, into a typically
much smaller - but “ unique” - identifier.

$ echo “OWASP2019” | shasum
8ae44490361a675416ab94c7a35e1456e32f9601
$ echo “OWASP2020” | shasum
a70065412784c4630153c3e66cf73bc65bd19dc3
$ echo “OWASP2020.” | shasum
0550ae6fb0547d362cb562bf8bdd551c7f8b413c

Hashing - SHA1 example

“unique” refers to collision resistance

Should be extremely hard to find more than one input that results in
the same output.. Like, so hard it would take Google’s idle compute weeks to find one.

Small changes to input should make significant, cascading changes to
the output.. But make sure your padded input and output block sizes are different.

Hashing - SHA1 example

What about output size > input size, like these?

“OWASP2020” fae3ed2ad31b7cf577932318c6732dce28cdea6c
“OWASP2021” a70065412784c4630153c3e66cf73bc65bd19dc3
“.” a5d5b61aa8a61b7d9d765e1daf971a9a578f1cfa

Block padding

Hashing - SHA1 example

What about output size > input size, like these?

“OWASP2020” fae3ed2ad31b7cf577932318c6732dce28cdea6c
“OWASP2021” a70065412784c4630153c3e66cf73bc65bd19dc3
“.” a5d5b61aa8a61b7d9d765e1daf971a9a578f1cfa

Block padding

Hashing - SHA1 example

What is this output, anyway?

“OWASP2999” 6a652a0badd7706dea07361cdccdfba9a36b0615
“OWASP3000” 70809fa061004b0297ca7f7503347cb005c9cb94
“OWASP3001” 0550ae6fb0547d362cb562bf8bdd551c7f8b413c

Hashing - SHA1 example

What is this output, anyway? Encoded as hex:

“OWASP2999” 6a 65 2a 0b ad d7 70 6d ea 07
 36 1c dc cd fb a9 a3 6b 06 15

SHA-1 output is 160 bits 0110101001100101 …
 20 bytes
 40 hex char 6a 65 …

Hashing vs Encryption

● Hashing is used to validate data
○ Message integrity - paired with original value
○ Passwords - don’t need original value

● Encryption is used to keep data secret
○ Keep data safe in transit
○ Stored data that is stolen cannot be read

Use cases

Hashing + Encryption

● Protect encrypted data from being tampered with

● Encrypt-then-Auth
● Auth-then-Encrypt
● Which is best? Arguments for both

● Bonus term: MAC “message auth codes”

Data in Transit

Secure communication: establishing a temporary
channel for comms.

Often “signed” keys for auth, then shared keys for
the session.

Data at Rest

Secure storage. To use an analogy:

 Armored truck moving valuables between banks

 Storing valuables in a safe

transit

 rest

Key Exchange

So, how can two parties set up a secure channel
when someone in the middle is listening to
everything?

It turns out, there are novel ways to exchange
secrets through/despite an intermediary.

Key Exchange in Abstract

Say Alice wants to send a super secret message to
Bob in a secure channel.

Key Exchange in Abstract

Alice seals her heartwarming words with her lock.

Alice

Key Exchange in Abstract

Bob can receive the sealed message, and apply his
own lock.

Alice Bob

Eve

Key Exchange in Abstract

Bob sends the message back, and Alice removes her
lock.

Bob Alice

Eve

Key Exchange in Abstract

Finally, Alice sends the message back to Bob, who
removes his lock:

Bob’s heart is thusly warmed.

Bob

Key Exchange: Diffie-Hellman

The preeminent example of key exchanges.

To explain DH, we need to touch on something.
Something dark. We need more math.

DH 101: Modular arithmetic 1/3

24hrs to 12am/pm:

1619 hrs mod 1200

= 419 (pm)

Modulus (think remainders)

DH 101: Modular arithmetic 2/3

● Exponentiation

103 = 1000

● Logarithm

log10(1000) = 3

Pop quiz: what’s a logarithm?
Inverse of an exponent

Given a base (10) and an
exponent (3), it’s really easy
to compute a result (1000)
modulo some prime number.

Given a modulo prime result of
some known base and secret
exponent, it’s extremely hard
to determine the original
exponent.

It can be said that this
problem cannot be solved in
polynomial time.

This is called the discrete
logarithm problem.

For a large prime modulus
value, the inverse
computation is prohibitively
expensive. Hard to calculate,
easy to verify. This property
forms the basis of
cryptography.

DH 101: Modular arithmetic 3/3

● Original calc

103 mod 13 = 12

● Logarithm

log10(?) = ?

Crux: What possible exponents, mod13,
 have a remainder of 12?

Logarithms Given a base (10) and an
exponent (3), it’s really easy
to compute a result (1000)
modulo some prime number.

Given a modulo prime result of
some known base and secret
exponent, it’s extremely hard
to determine the original
exponent.

It can be said that this
problem cannot be solved in
polynomial time.

Diffie Hellman Walkthrough

Wikipedia kinda says it best. Alice and Bob want to share a secret.
They agree publicly to use a prime number, 23, and a base, 5.

Alice chooses a secret value: 6
Bob chooses a secret value: 15

Alice calculates 5^6 mod 23 = 8
Bob calculates 5^15 mod 23 = 19

Alice and Bob share 8 and 19 with each other.

Public prime, 23, and base, 5

Alice’s secret: 6
 Bob’s secret: 15

Alice: 5^6 mod 23 = 8
 Bob: 5^15 mod 23 = 19
Alice and Bob exchange 8 and 19,
publicly, then:

Alice: 19^6 mod 23 = 2
 Bob: 8^15 mod 23 = 2

Diffie Hellman Walkthrough

Step 1:

Step 2:

 (5a mod 23)b mod 23
 =(5b mod 23)a mod 23

A line through an elliptic curve
will intersect with the curve in
three places.

Elliptic Curves

C

B

A A • B = C

Elliptic Curves

The result - C - can be used as an
input into finding another point.

C

A A • C = D

B

D
•

Elliptic Curves

Typical “curve,” like P-256:

I told you, sexy

Elliptic Curves

e.g., logjam - “export grade” DH

Equivalent strength SSH Keys:
 RSA: 2048 bits
ECDSA: 256 bits

OK, but why curves?

Elliptic Curves

e.g., logjam - “export grade” DH

Equivalent strength SSH Keys:
 RSA: 2048 bits
ECDSA: 256 bits

OK, but why curves?

Elliptic Curves

Curves are used for encryption and
for DH key exchanges because
secret starting points are hard to
derive.

X25519 is the DH exchange
based on my fave, Curve25519

(So-named because it uses

 Prime p = 2)
255 - 19

Curve25519
● Standardized in TLS

1.3
● DNSCrypt
● OpenSSH
● Signal
● AirPlay
● iOS
● Android
● OpenBSD
● Tor

P-256 and others like
secp256k1
● Ethereum
● Bitcoin
● Government backdoors

(prolly?)

Elliptic Curves

Protip: Just use whatever Microsoft
backs

Kidding aside I
think cloudflare
rolled a sweet Go
implementation, 3x
+ perf .. so ..

Symmetric vs. Asymmetric

● Symmetric: same key is used to encrypt and
decrypt (in transit, the temporal session key.
at rest, typically a fixed encryption key)

● Asymmetric: private key used to decrypt/sign,
public key used to encrypt to person that
holds private key, and validate messages
from said keyholder.

TLS and HTTPS

Common misconception that TLS uses private/public
keypair for session encryption. Good
implementations authenticate with these keys and
then negotiate (and frequently cycle) throwaway
session keys. Related: “Perfect forward secrecy”

Typical:
 RSA 2048-bit server key, signed by a CA
 AES 256-bit session key for cipherstream

“cipher suite” deconstruction

ECDHE-RSA-AES128-GCM-SHA256
 SHA 256 HMAC
 Galois Counter Mode
 AES cipher
 RSA key+signature
 Ephemeral
 Diffie-Hellman
Elliptic Curve

TLS: browsers, websockets..

Protocol: TLS 1.3

Private Key: RSA 2048 bit

Encryption: AES
 w/Counter mode

Exchange: X25519

Signatures: SHA-256

Questions

This slide is here
because of my
unbending optimism

Bonus reading

● Dive deeper into applied crypto
○ Crypto101 (lvh) - bit deeper

■ crypto101.io

○ Graduate applied cryptography - lot deeper

■ crypto.stanford.edu/~dabo/cryptobook/

○ Nigel Smart’s UMD intro crypto

○ I’ve heard coursera.org/learn/crypto is good?

● Guidelines
○ safecurves.cr.yp.to
○ cipherli.st

 (reference TLS config guides)
○ github.com/ssllabs/research

